电子商务查询通常简短而模棱两可。因此,查询理解通常使用查询重写来消除用户输入查询。在使用电子商务搜索工具时,用户倾向于在购买之前输入多个搜索,我们称之为上下文。这些历史搜索包含有关用户真正购物意图的上下文见解。因此,对此类上下文信息进行建模对于更好的查询重写模型至关重要。但是,现有的查询重写模型忽略了用户的历史行为,而仅考虑即时搜索查询,这通常是一个简短的字符串,提供有关真实购物意图的有限信息。我们建议一个端到端的上下文感知查询重写模型来弥合此差距,从而考虑了搜索上下文。具体而言,我们的模型使用历史记录搜索查询及其包含的单词构建了会话图。然后,我们采用图形注意机制,该机制对交叉关系进行建模并计算会话的上下文信息。随后,模型通过使用聚合网络将上下文信息与即时搜索查询组合来计算会话表示。然后将会话表示形式解码以生成重写的查询。从经验上讲,我们证明了我们方法对各种指标下最先进的方法的优越性。在从线购物平台的内部数据上,通过介绍上下文信息,我们的模型在MRR(平均值等级)指标下取得了11.6%的改善,并在HIT@16度量指标(命中率指标)下提高了20.1%使用最佳基线方法(基于变压器的模型)。
translated by 谷歌翻译
已经提出了图形神经网络(GNN)预训练方法来增强GNN的能力。具体而言,首先在大规模的未标记图上预先训练GNN,然后在单独的小标记图上进行微调,以用于下游应用程序,例如节点分类。一种流行的预训练方法是掩盖一部分边缘,并接受了GNN的培训以恢复它们。但是,这种生成方法遭受了图不匹配。也就是说,输入到GNN偏离原始图的蒙版图。为了减轻此问题,我们提出了DIP-GNN(图神经网络的歧视性预训练)。具体来说,我们训练一个发电机以恢复蒙版边缘的身份,同时,我们训练一个判别器,以区分生成的边缘与原始图的边缘。在我们的框架中,鉴别器看到的图形更好地匹配原始图,因为生成器可以恢复蒙版边缘的一部分。大规模同质和异质图的广泛实验证明了该框架的有效性。
translated by 谷歌翻译
近年来,人们对多任务学习的兴趣越来越多。在这项工作中,我们通过合并模型应在模型不应该执行的两项辅助任务的两种辅助任务和对抗性任务中,提出了多任务学习的广义概念。我们采用必要的条件分析(NCA)作为数据驱动的方法来确定这些任务应该属于哪个类别。我们的新颖拟议框架,对抗性多任务神经网络(AMT),对NCA确定的对抗性任务进行惩罚,由NCA确定为场景识别在整体视频理解(HVU)数据集中,以改善动作识别。这更颠覆了一个普遍的假设,即应始终鼓励模型在多任务学习中完成所有任务。同时,AMT仍然保留多任务学习作为现有方法的概括的所有好处,并将对象识别作为辅助任务来帮助行动识别。我们介绍了HVU的两个具有挑战性的场景不变的测试分裂,其中对模型进行了对训练中未遇到的动作场合共发生的评估。我们表明,我们的方法将准确性提高了约3%,并鼓励模型参与动作功能,而不是相关的偏见场景功能。
translated by 谷歌翻译
我们首次建议使用基于多个实例学习的无卷积变压器模型,称为多个实例神经图像变压器(Minit),以分类T1Weighted(T1W)MRIS。我们首先介绍了为神经图像采用的几种变压器模型。这些模型从输入体积提取非重叠的3D块,并对其线性投影进行多头自我注意。另一方面,Minit将输入MRI的每个非重叠的3D块视为其自己的实例,将其进一步分为非重叠的3D贴片,并在其上计算了多头自我注意力。作为概念验证,我们通过训练模型来评估模型的功效,以确定两个公共数据集的T1W-MRIS:青少年脑认知发展(ABCD)和青少年酒精和神经发展联盟(NCANDA)(NCANDA) 。博学的注意力图突出了有助于识别脑形态计量学性别差异的体素。该代码可在https://github.com/singlaayush/minit上找到。
translated by 谷歌翻译
神经科学研究的一种基本方法是基于神经心理学和行为措施,即某些因素(例如,与生活事件相关)是否与结果(例如抑郁症)有关。近年来,深度学习已成为通过预测一系列因素的结果并确定推动预测的最“信息性”的结果,成为进行此类分析的潜在替代方法。但是,这种方法的影响有限,因为其发现与支持假设的因素的统计意义无关。在本文中,我们根据排列测试的概念提出了一种灵活且可扩展的方法,该方法将假设检验集成到数据驱动的深度学习分析中。我们将我们的方法应用于对青春期酒精和神经发育联盟(NCANDA)的621名青少年参与者的年度自我报告评估,以预测负面价,这是根据NIMH研究领域标准(RDOC)的重大抑郁症的症状。我们的方法成功地识别了进一步解释症状的危险因素类别。
translated by 谷歌翻译
将机器学习算法转换为临床应用需要解决与解释性有关的挑战,例如考虑混杂变量(或元数据)的影响。混杂变量会影响输入训练数据和目标输出之间的关系。当我们在此类数据上训练模型时,混杂的变量会偏向于学习功能的分布。最近有前途的解决方案元数据归一化(MDN)估计了基于不可训练的封闭形式解决方案的元数据与每个特征之间的线性关系。但是,该估计受到迷你批量的样本量的限制,因此可能导致该方法在训练过程中不稳定。在本文中,我们通过应用罚款方法(称为PDMN)扩展了MDN方法。我们将问题投入到双层嵌套的优化问题中。然后,我们使用惩罚方法近似此优化问题,以便MDN层中的线性参数可以训练并在所有样本上学习。这使PMDN可以插入任何架构,甚至可以运行批处理级操作,例如变形金刚和经常性模型。我们在合成实验中使用PMDN和MDN的混杂因素和更大的独立性表现出了更大的独立性,并且在合成实验中和多标签的多站点的磁共振图像数据集(MRIS)。
translated by 谷歌翻译
The state-of-the-art language model-based automatic metrics, e.g. BARTScore, benefiting from large-scale contextualized pre-training, have been successfully used in a wide range of natural language generation (NLG) tasks, including machine translation, text summarization, and data-to-text. Recent studies show that considering both major errors (e.g. mistranslated tokens) and minor errors (e.g. imperfections in fluency) can produce high-quality human judgments. This inspires us to approach the final goal of the evaluation metrics (human-like evaluations) by automatic error analysis. To this end, we augment BARTScore by incorporating the human-like error analysis strategies, namely BARTScore++, where the final score consists of both the evaluations of major errors and minor errors. Experimental results show that BARTScore++ can consistently improve the performance of vanilla BARTScore and outperform existing top-scoring metrics in 20 out of 25 test settings. We hope our technique can also be extended to other pre-trained model-based metrics. We will release our code and scripts to facilitate the community.
translated by 谷歌翻译
Biomedical named entity recognition (BioNER) seeks to automatically recognize biomedical entities in natural language text, serving as a necessary foundation for downstream text mining tasks and applications such as information extraction and question answering. Manually labeling training data for the BioNER task is costly, however, due to the significant domain expertise required for accurate annotation. The resulting data scarcity causes current BioNER approaches to be prone to overfitting, to suffer from limited generalizability, and to address a single entity type at a time (e.g., gene or disease). We therefore propose a novel all-in-one (AIO) scheme that uses external data from existing annotated resources to improve generalization. We further present AIONER, a general-purpose BioNER tool based on cutting-edge deep learning and our AIO schema. We evaluate AIONER on 14 BioNER benchmark tasks and show that AIONER is effective, robust, and compares favorably to other state-of-the-art approaches such as multi-task learning. We further demonstrate the practical utility of AIONER in three independent tasks to recognize entity types not previously seen in training data, as well as the advantages of AIONER over existing methods for processing biomedical text at a large scale (e.g., the entire PubMed data).
translated by 谷歌翻译
我们描述了JD Explore Academy对WMT 2022共享的一般翻译任务的提交。我们参加了所有高资源曲目和一条中型曲目,包括中文英语,德语英语,捷克语英语,俄语 - 英语和日语英语。我们通过扩大两个主要因素,即语言对和模型大小,即\ textbf {vega-mt}系统来推动以前的工作的极限 - 进行翻译的双向培训。至于语言对,我们将“双向”扩展到“多向”设置,涵盖所有参与语言,以利用跨语言的常识,并将其转移到下游双语任务中。至于型号尺寸,我们将变压器限制到拥有近47亿参数的极大模型,以完全增强我们VEGA-MT的模型容量。此外,我们采用数据增强策略,例如单语数据的循环翻译以及双语和单语数据的双向自我训练,以全面利用双语和单语言数据。为了使我们的Vega-MT适应通用域测试集,设计了概括调整。根据受约束系统的官方自动分数,根据图1所示的sacrebleu,我们在{zh-en(33.5),en-zh(49.7)(49.7),de-en(33.7)上获得了第一名-de(37.8),CS-EN(54.9),En-CS(41.4)和En-Ru(32.7)},在{ru-en(45.1)和Ja-en(25.6)}和第三名上的第二名和第三名在{en-ja(41.5)}上; W.R.T彗星,我们在{zh-en(45.1),en-zh(61.7),de-en(58.0),en-de(63.2),cs-en(74.7),ru-en(ru-en(ru-en)上,我们获得了第一名64.9),en-ru(69.6)和en-ja(65.1)},分别在{en-cs(95.3)和ja-en(40.6)}上的第二名。将发布模型,以通过GitHub和Omniforce平台来促进MT社区。
translated by 谷歌翻译
Covid-19幸存者中很大一部分经历了经常影响日常生活的持续多系统症状,这种疾病被称为SARS-COV-2感染的长期或急性后静脉曲张。但是,识别长期的卷文章是具有挑战性的,因为文章是指使用各种较少常见的术语或根本不使用命名的条件。我们开发了一个迭代的人类机器学习框架,旨在有效利用可用的数据并最有效地利用人类标签。具体而言,我们的方法将数据编程与主动学习结合到了强大的集合模型中。在保留集上评估我们的模型表明了其他方法的灵敏度的三倍。我们将模型应用于PubMed来创建长期的共同集合,并证明(1)最长的卷vid文章在命名该条件时并不是用任何名称(2)来指代长的covid,在生物医学文献中最常使用的名称是长的,并且(3)长互联物与各种身体系统中的疾病有关。长期COVID系列每周更新,可在Litcovid门户网站上进行在线搜索:https://www.ncbi.nlm.nih.gov/research/coronavirus/docsum/docsum?filters=e_condition.longcondition.longcovid.longcovid
translated by 谷歌翻译